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ABSTRACT
[bookmark: _Hlk68777180]The generic volcano plot is a widely employed practical tool to display and compare the activity of different electrocatalysts in dependence of a small number of descriptors. It is known that the apex of the volcano curve shifts with applied potential. However, the trend of the potential-dependent shift of the volcano apex has remained unclear. Herein, we address this question for a two-step electrocatalytic reaction. With the transfer coefficient assumed as 1/2, our analysis reveals that the adsorbate coverage at the volcano apex equals 1/2 regardless of potential. We present a criterion to predict the direction and magnitude of the apex shift as a function of the activation energies of the two steps. Thereafter, the criterion is extended to the oxygen reduction reaction. The influence of the transfer coefficient and the potential of zero charge on the volcano plot is revealed. Implications of the presented criterion for targeted design of electrocatalysts are discussed.


INTRODUCTION
Electrocatalyst materials are needed in electrochemical devices to accelerate vital reactions, such as the oxygen reduction or evolution reactions.[1,2] In this context, concepts founded on the Sabatier-volcano principle find increasing use in comparative analyses and materials screening.[3–5] In the archetypal variant, a volcano-plot relates the activities of a class of catalytic materials to the chemisorption strength of reaction intermediates. In the 1950s, Parsons[6] and Gerischer[7] derived a volcano-shape curve for the hydrogen evolution reaction (HER). The curve is a manifestation of the Sabatier principle of heterogeneous catalysis,[8] which states that the interaction between a catalyst surface and adsorbed reaction intermediates should be neither too strong nor too weak. In the 1970s, Trasatti compiled the first experiment-based volcano plot for the HER which employed the hydrogen adsorption enthalpy extracted earlier by Krishtalik from experimental data.[9,10] Platinum was found at a location closest to the apex of the volcano curve.
Stepping into the 21st century, quantum-chemistry calculations in tandem with the computational hydrogen electrode approach have enabled the generation of extensive databases of adsorption energies,[11,12] shedding new light on the pertinent criteria for catalyst design. It has claimed that for the optimal electrocatalyst material the equilibrium potential of each reaction step must be equal to the overall equilibrium potential.[13] In this vein, considering a two-step two-electron reaction, the binding energy of the reaction intermediate (RI) should be precisely half of the sum of the free energy of reactant and product states. If the reaction is controlled at its overall equilibrium potential, then it features a perfectly flat free energy profile. It should be noted that this oversimplified picture disregards the impact of activation free energies on the reaction pathway. A material with the ideal energetic properties for the reaction of interest is called a thermodynamically neutral one.[10] 
This approach assesses the catalyst activity by the so-called thermodynamic limiting potential (), the potential at which the reaction energy of the thermodynamically least favorable step approaches 0. In other words: once  is achieved, no step is uphill.[14] The  vs. intermediate binding energy relation translates into a thermodynamic volcano plot (TDVP). Owing to its simple concept and advances in ab initio techniques,[15,16] computational materials screening based on the TDVP has made deep inroads into electrocatalysis.[3,4]
The curse and the blessing of the TDVP both lie in its simplicity, that is, catalyst activity is solely determined by binding energies of adsorbed intermediates. Schmickler et al. suggested that a complete picture of catalyst activity for the HER should entail at least two more properties: the relative position of the metal d-band and the Fermi level, and the interaction strength between the d-band and the hydrogen 1s orbital.[17] Though not independent, these two factors as well as the binding energy sometimes act against each other, as discussed in ref 14. Besides, another severe limitation of the TDVP analysis is that it ignores the impact of activation energies and applied overpotential.
A recent experimental study revealed that the assumption of thermoneutrality for the optimal catalyst in the TDVP analysis failed to explain the superior activity of RuO2 over IrO2 for the oxygen evolution reaction (OER) or the chlorine evolution reaction (CER).[18–20] A kinetic volcano plot, compiled by Exner, explained this anomaly.[21] It exposes a shift of the volcano apex towards weaker-bonding intermediates with increasing overpotential for both reduction and oxidation reactions. Instead of , the activity is controlled by the energy difference between the initial configuration of the surface (identified from the DFT-based Pourbaix diagram) and the highest transition state in the free energy diagram (FED) of the reaction,[22–24] similar to the property considered in the energetic span model devised by Kozuch and Shaik[25,26] and introduced to the field of electrocatalysis by Chen et al.[27,28] More recently, by microkinetic modeling, Zhang, Zhang and Huang pointed out that for the oxygen reduction reaction (ORR) an increase in overpotential shifts the optimal catalyst (in terms of the turnover frequency, TOF) to stronger oxygen bonding.[29] Around the same time, Ooka and Namakura derived a potential-dependent volcano plot for the HER and demonstrated that the apex could shift in either direction depending on reaction conditions.[30] 
[bookmark: _Hlk55937904]Up to now, the deviation of the optimal material from the prediction based on the TDVP has been reported for many crucial reactions (HER, ORR, CER, to name a few).[19,21,29,30] It could be rationalized by the potential dependence of the volcano plot.[29,30] Nevertheless, there is a lack of a universal criterion to determine, for any given reaction, in which direction the kinetic volcano apex shifts. In order to predict the optimal material at any overpotential, it is a pressing need to provide such a criterion. 
For a two-step reaction with one adsorbed intermediate, the adsorbate binding energy is the descriptor of a conventional one-dimensional volcano plot. A multi-step reaction with n (n>2) types of adsorbed intermediates requires an n-dimensional volcano plot which, by employing scaling relations, can be reduced to a one-dimensional one in the most expedient case.[14] However, in addition to the binding energy, surface charging relations and local conditions at the reaction plane that depend on it severely alter catalyst activity.[31–35] Thus, a volcano plot considering these effects would be suitable for a meaningful comparison of different catalysts. On the one hand, catalyst-specific parameters, such as transfer coefficient  and the potential of zero charge (PZC) , add extra dimensions to volcano plots.[36] On the other hand, catalyst-nonspecific parameters, such as reactant concentrations and electrode potential, will affect shape and peak position of volcano plots.
In this article, we analyze a two-step proton-coupled electron transfer (PCET) reaction to understand the parametric effects that control the peak shift. We first find that, on the premise of the transfer coefficient being 1/2, the optimal catalyst at any given potential is the one that exhibits half coverage by adsorbed intermediates. Then, we provide a criterion that pinpoints the shift direction of the volcano apex. This criterion focuses on the effect of changes in the activation energies while other kinetic factors are assumed constant to retain a low-dimensional volcano plot. After generalizing the criterion with respect to reactant and product concentrations, we demonstrate its applicability to the ORR, a multi-step PCET reaction. Following that, systematic analyses on the influence of the surface charging relations and intrinsic kinetic parameters on the criterion are carried out. A discussion of implications for materials screening and design concludes this contribution. 
MODEL DEVELOPMENT
Reaction scheme
The considered two-step proton-coupled electron transfer reaction is
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As illustrated in Scheme 1, in step 1,  is chemisorbed onto the catalyst surface to form an intermediate . In step 2, the intermediate is desorbed after receiving an electron and a proton. This two-step reaction scheme applies directly for several important reactions, for example, with AH* being H* for the HER () or being COOH* for the CO2 reduction reaction at Au or Ag surfaces ().
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	Scheme 1. Schematic of the two-step PCET reaction. In the first step, reactant A receives an electron and a proton, forming a chemisorbed intermediate AH. In the second step, AH receives another electron-proton pair, transforms into AH2 and desorbs from the electrode surface.


Microkinetic model
The reaction equations are
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where  and  are the forward and backward rate constants of step , and  is the coverage of AH*. Definitions and values of other base-case parameters are given in Table 1 and shown in Scheme 2. Particularly, in such definition,  does not affect  or , as the Bronsted–Evans–Polanyi relation can be written as  with  being the reaction free energy of step i.[37] Moreover, the values of  and  are selected to ensure the overall equilibrium potential, , is around 1 V, which is a moderate value.
[bookmark: _Ref62839471][bookmark: _Ref69747715][bookmark: _Ref62839457]Table 1. Base-case parameters
	Symbol
	Definition
	Value

	
	Dimensionless concentration of A
	1

	
	Dimensionless concentration of AH2
	1

	
	Dimensionless concentration of  in the bulk solution
	1

	
	Transfer coefficient of step 1 and 2
	0.5

	
	Standarda Gibbs energy of A
	3 eV

	
	Standard Gibbs energy of AH2
	0.5 eV

	
	Standard equilibrium potential of step 1
	

	
	Standard equilibrium potential of step 2
	

	
	Standard activation energy of the first step at 
	0.5 eV 

	
	Standard activation energy of the second step at 
	0.5 eV

	
	Permittivity of water
	78.5


aStandard state corresponds to 298 K, 1 bar, 0 V applied potential vs the standard hydrogen electrode (SHE), 1 mol/L concentration for soluble reactants and 1 bar pressure for gaseous reactants.
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Scheme 2. Free energy diagram illustrating the base-case parameters. The conventional computational hydrogen electrode scheme is used here.[14] The superscript “eq” in  (or ) denotes that step 1 (or step 2) is in equilibrium when the activation energy is measured.



At steady state, we havee
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where  is the turnover frequency. Substituting Equation (2a) into Equation (3) and solving for  gives
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with rate constants,
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	 (7)

	
	 (8)
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where  and  are the potential in the metal electrode and that at the position of the outer Helmholtz plane (OHP), respectively. The proton concentration at the OHP is then
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In the Gouy-Chapman model,[38,39]  is calculated from
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[bookmark: _Hlk83346583]where  is the reference  concentration,  is the permittivity of bulk water,  is the potential of zero charge (PZC), and  and  are the permittivity and thickness of the medium between the OHP and the metal electrode surface, respectively. It is worthwhile to note that by PZC we always imply the potential of zero “free” charge.[49]
Different catalysts feature different  and PZCs. When generating a volcano plot, one of the most important yet usually overlooked aspects is that  and , just like  and PZCs, do not remain the same among different materials evaluated. Thus, every parameter will contribute a degree of freedom, and a kinetic volcano plot accounting for all the parameters should be multidimensional. However, aiming for a simplified picture and an analytical result, we make the following assumptions when presenting and proving the criterion in the next section:
1. The supporting electrolyte is highly concentrated so that  can be approximated to be 0 V, i.e., equal to the potential in the bulk solution (the reference potential). In this vein, the PZC does not play a role in the volcano analysis;
2. For the whole class of materials,  for both step 1 and 2;
The assumptions will be the basis for the mathematical derivation in the following section. In the Discussion section, however, we will relax these assumptions one at a time and analyze the influence of each parameter.

CRITERION AND PROOF
The optimal binding energy corresponding to the volcano apex is denoted as  and the overpotential is defined as . The criterion for finding the optimal electrocatalyst at any overpotential will be formulated by the following theorem, which will be rigorously proved shortly.
THEOREM 1. Consider a two-step proton-coupled electron transfer reaction in solution with high supporting-electrolyte concentration,  and .
If , then as  increases,  becomes more positive, and levels off at very large .
If , then as  increases,  remains the same.
If , then as  increases,  becomes more negative, and levels off at very large .
Theorem 1 provides a universal criterion for the direction of the shift of the volcano apex with increasing overpotential . Figure 1a demonstrates the volcano plot for the case with . As the overpotential increases, the volcano curve shifts up, and its apex moves towards right, asymptotically approaching a limiting value. The change of  with  is shown in Figure 1b for all three cases listed in Theorem 1. For ,  remains 1.75 eV which is the thermoneutral value given by .  induces an opposite trend compared with .
	[image: ]

	[bookmark: _Ref49203662]Figure 1. Illustration of Theorem 1. a) Kinetic volcano plot at four different overpotential s assuming  and . The volcano apex moves to the right with increasing ; b) The optimal binding energy as a function of  for , ; , ; , . The trends are in line with that stated in Theorem 1. For both a) and b), parameters other than  retain their base values shown in Table 1.



Proving directly Theorem 1 by relating  with  requires cumbersome mathematics. Instead, we will exploit  in an outflank strategy shown in Scheme 3. Lemma 1 will give the value of the optimal coverage, , corresponding to the volcano apex, while Lemma 2 will give the change of  with . In short,  serves as a bridge which helps to locate the volcano apex at any overpotential.
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	Scheme 3. Role of coverage  in the proof of Theorem 1: a link between  and . Using Lemma 1 and Lemma 2 with the help of  allowing for a much easier proof of Theorem 1.



LEMMA 1. Consider a two-step proton-coupled electron transfer reaction in solution with high supporting-electrolyte concentration and . Then, for any , .
Proof. We can find  from the condition . Then, substituting the obtained  into  gives the corresponding .
Here, as stated above, . This assumption is valid for the case of a highly concentrated supporting electrolyte. Rewriting each term in the denominator of the  in Equation (5) as a function of  yields
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	 (13)

	
	 (14)
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where  and  are independent of  and given in the Supporting Information. By substituting Equations (12)-(15) to Equation (4), we can express  as a function of ,
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Meanwhile, we can express the numerator of the TOF as
	
	 (17)


which is independent of . The reciprocal of  is then written as
	
	 (18)


Taking the derivative, i.e., , gives
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With  and substituting Equation (16) to Equation (19), we finally arrive at , as is also confirmed by numerical simulations of the volcano plot and  at four different values of , as illustrated in Figure 2. Note that the proof of Lemma 1 is independent of the values of  and .                     □
	 [image: ]

	[bookmark: _Ref54409677]Figure 2. The upper subfigure is the volcano plot for  and  at different values of the overpotential . Other parameters retain their base values in Table . The lower subfigure shows  as a function of . Changing overpotential does not alter .


In the case of , as considered here, the optimal binding energy is calculated by inserting  into Equation (16),
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where  and  are dependent on  (see the Supporting Information), so  is a function of . In the limit of high overpotential, when  and  can be neglected, we obtain
	
	 (21)


The fact that  is invariant with  corroborates the statement in Theorem 1:  levels off at large . The first term is the binding energy of the so-called thermoneutral catalyst at the equilibrium potential.[12,13] The second and last two terms account for the deviation from thermoneutrality because of concentration and activation energies. The larger the difference in activation energies, the larger the deviation of the optimal catalyst from the thermoneutral one; the deviation could be well above 0.2 eV, the uncertainty in binding energy from DFT calculations.[40]
Having established that the optimal performance occurs at  (for , the correlation between coverage and overpotential, which will be introduced by LEMMA 2, allows connecting the position of the volcano apex with the overpotential (see Scheme 3).
LEMMA 2. Consider a two-step proton-coupled electron transfer reaction in solution with high supporting-electrolyte concentration,  and . 
If , then for any catalyst, as  increases,  increases. i.e., .
If , then for any catalyst, as  increases,  remains the same.
If , then for any catalyst, as  increases,  decreases. i.e., .
Proof. Rewriting each term in  as a function of ,
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	 (24)
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gives,
	
	 (26)


where , ,  and  are independent of , and given in the Supporting Information. Taking the derivative of  with respect to  gives
	
	 (27)


 warrants , which can be written as
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Because of , the condition is . In the same vein,  requires  and  requires .         		□
Proof of Theorem 1.
Let’s consider the case with . The other two cases follow the same logic. It is proved by Lemma 1 that the optimal catalyst is half-covered by the adsorbed intermediate irrespective of . Therefore, the optimal catalyst denoted by  at a certain overpotential  is half-covered. As the overpotential increases to , Lemma 2 implies that  of  increases above 1/2, shifting it away from the volcano apex. Therefore, the optimal catalyst at  should bind  weaker than  to ensure that the “half-coverage” requirement is fulfilled. Equivalently speaking, as overpotential increases from  to ,  becomes more positive.
At sufficiently high , we have
	

	 (29)


Because  and  are independent of  (see the Supporting Information),  becomes independent of  in this limit, so that  levels off. 				□
We will use a concrete example to illustrate the proof. We assume  and , while the other parameters are set at the base values in Table .  as a function of  is plotted in Figure 3 for four different catalysts,  to , with increasing binding energies.
	[image: ]

	[bookmark: _Ref48620680]Figure 3. The coverage of the adsorbed intermediate  as a function of overpotential  for four different catalysts ~ for the case with  and . Binding energies of the four catalysts are showed in the plot. The curves are divided into four overpotential regimes, within which the color is the same as that used in Figure 2. Other parameters retain their base values in Table .


At  Lemma 1 tells us that the best catalyst is  with 50% coverage and features a binding energy of 1.77 eV. As  increases to , the coverage on  increases to almost 100%, which is in line with Lemma 2. However, only by reducing the coverage to 50% can the optimal catalytic activity be achieved. Thus at , catalyst , with weaker bond strength (more positive binding energy), is half-covered by AH, and hence standing at the volcano apex. As ,  is almost invariant with , so the change of  is negligible.

DISCUSSION
Generalization to the case with 
In most of real situations, the dimensionless concentrations of the reactant and product are different. Without the assumption of , the condition  in Theorem 1 will change to  according to Equation(28).
Recalling  and the Nernst equation , the new condition can be rewritten as
	
	 (30)


with  and .

Application to the ORR: a four-electron PCET reaction 
The developed criterion can be used in the analysis of other electrocatalytic reactions that involve more steps and several intermediates, as will be demonstrated for the ORR in this section. The definition of  needs to be modified for multi-step reactions: . Herein, the subscript ‘ad’ stands for the adsorption of reactant onto the catalyst surface (the first step), while ‘de’ stands for the desorption of the product from the catalyst surface (the last step).
The ORR pathway is given by Equation (31),[31]
	
	[bookmark: _Ref49210424](31a)

	
	(33b)

	
	(33c)

	
	(33d)


The microkinetic model is the same as that used in Ref. 25 and given in the Supporting Information. Here, we use , , , and . Simple calculation shows that  is fulfilled, which predicts that as  increases, the apex of the volcano plot will shift to stronger binding regime, and level off at large 
Figure 4 shows the volcano plot derived by the microkinetic model. As  increases,  decreases, and levels off for . The generalized criterion predicts this behavior.
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	[bookmark: _Ref49210522][bookmark: _Ref69747869]Figure 4. Kinetic volcano plot of the ORR. , , , and . Other parameters are the same as those used in Ref. 25. The condition, , is fulfilled. As  increases, the volcano apex moves to the left, and levels off at high , as predicted by the generalized criterion.



Influence of kinetic parameters
In the above analyses, the criterion for the shift of the volcano apex has been proven and tested for the ORR with several restrictive assumptions on kinetic parameters. In this section, these assumptions are relaxed one at a time. We analyze the stability of the criterion against these variations. These tests are done for the generic two-step mechanism in Equation (1a).
Influence of transfer coefficient 
[bookmark: _Hlk68625886]The transfer coefficient, , may depart from 1/2, and differ among different steps for a single material as well as among different materials for a single step. Following the literature, typical values of  estimated theoretically lie in the range between 0.3 and 0.7.[22,33,41–44] In this section, we study a group of 21 materials with the binding energy  ranging from 1 to 2 eV in a step of 0.05 eV. Given that experimental data of  are scarce, we do not know the precise value of  for a given catalyst and a given step. Therefore, for each one of these materials we randomly assign 50 sets of [ between 0.3 and 0.7, as transfer coefficients of step 1 and step 2, respectively, and calculate the TOF. In this way, 50 different TOFs are obtained for every . The mean and standard deviation of those TOFs, then, translate into the volcano plot shown in Figure 5. Here, the condition  is fulfilled by assuming  and  while other parameters retain their base values. The overall trend of the apex shift is preserved: as  increases,  becomes more negative, and levels off at large .
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	[bookmark: _Ref48777333]Figure 5. Volcano curves of mean (deep-colored thin curve) and standard deviation (light-colored broad band) of 50 sets of TOF values. For each , 50 sets of  for step 1 and step 2 are used to generate the TOF values.  and , and other parameters retain their base values. The overall trend of the apex shift remains the same as the criterion: for the case with ,  becomes more negative, and levels off at large .



Influence of  and 
Proper consideration of surface charging relations is indispensable when modeling electrocatalytic reactions.[29,31,32,45] The resulting local conditions at the reaction plane, such as , determines both the driving force of the reaction and the concentration of charged species (see Equation (6)-(10)). For highly concentrated solutions, ions effectively screen the electric field, so  can be approximated as 0 V relative to the potential in bulk solution. For less concentrated solutions, however,  needs to be explicitly calculated. Employing Equation (11),  gives . The assumption of high supporting electrolyte concentration leads to an underestimation of the driving force and an overestimation of the proton concentration at the OHP. Because the influence of concentration is larger, the TOF will be overrated.
If PZCs are the same for the whole class of materials, so will be  (assuming the reaction takes place in the same solution). In this vein, discarding the assumption of high solution concentration will only lead to a decrease in magnitude of the TOF curves, compared with the curves in Figure 1, while maintaining the trend for the apex shift, as stated in Theorem 1. 
However, the difference in PZCs would result in different . In order to evaluate its effect, we employed PZC as another dimension to generate a two-dimensional volcano plot, and check if a certain set of PZCs alters the trend in . We evaluate the following two cases:
Case 1: overall equilibrium potential far from 0 V, here  is assumed; Case 2: overall equilibrium potential relatively close to 0 V, here  is assumed. For the following analyses in this section, we assume  and . Other parameters remain at their base values with the exception of  being  for case 2 to impose .
Experimental values of the PZCs of common metal catalysts largely falls into the range between -0.5 V and0.5 V, as listed in Table 2.[46–49] Thus, in the following analysis, the PZC axis varies in the range of [-0.5, 0.5].
[bookmark: _Ref62845053][bookmark: _Hlk83346522]Table 2. PZCs of common catalystsa. Here, the PZC refers to the potential of zero free charge. Solution used for the PZC tests are 0.1 M H2SO4. Data are collected from Ref. [46]–[49]
	Metal
	Ag(111)
	Pt(100)
	Pd(111)
	Pt(111)
	Au(111)
	Ir(111)
	Ru(111)

	PZC / VSHE
	-0.50
	0.34
	0.21
	0.29
	0.47
	0.02
	0.06



Figure 6 shows the volcano analysis for Case 1 (Figure 6a,b) and Case 2 (c,d). Comparing the TOF of the class of materials with a certain value of the PZC, for example  (the horizontal white solid lines in Figure 6a),  decreases with increasing overpotential. This is predicted by the criterion for reactions that fulfill . Moreover, at a given overpotential, changing the PZCs of all materials by the same magnitude does not alter . This can be observed by the TOF values with  and , specified by the solid line and the dashed line in the upper subfigure of Figure 6a.
For a certain binding energy, higher PZC leads to higher TOF, as can be seen in the longitudinal dotted line in Figure 6c. The higher the PZC is, the lower  would be (see Equation (11)), which leads to a better performance. 1 V difference in the PZC could lead to 10 orders of magnitude difference in TOF (see Figure 6c). As a catalyst-specific property, the PZC is likely to alter the activity trend predicted by previous thermodynamic and kinetic volcano plots in the literature that do not consider the PZC explicitly.
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	[bookmark: _Ref62845707]Figure 6. (a), (c) Two-dimensional volcano plots for case 1 (a) and case 2 (c) at  and . For a certain binding energy, higher  leads to higher activity. Modifying the PZCs for the whole class of materials by the same magnitude does not shift . (b), (d) Volcano curves and TOF values at  and  for case 1 (b) and case 2 (d). Solid curves: volcano curves assuming . Circles: TOF values obtained with a specific set of , randomly sampled from  to , for each material. The TOF values close to the highest activities at two different  are marked with full circles. The explicit consideration of the PZC exerts a higher impact on the criterion for case 2 than for case 1. For (a)~(d), , , and other parameters retain their base values except  is assumed for (b) and (d).



The influence of scattering PZCs of different catalysts is investigated in the following manner. For the first case, 21 materials with the binding energy  ranging from 1 to 2 eV with a step of 0.05 eV are studied. For case 2, another 21 materials from 2 to 3 eV are selected. In contrast to , the PZC is a well-documented property of materials. Therefore, the “mean and standard deviation” treatment in the previous section is not necessary. Here, we intend to show how a volcano plot for a specific class of materials looks like. For each of these materials, a random value between -0.5 V and 0.5 V is assigned to the PZC (specified in the Supporting Information), then its TOF is calculated and compiled into a volcano plot (c.f. Figure 6b,d).
The fluctuation of the TOFs around the base-case volcano curves in Case 2 is larger than that of Case 1. Consequently, for a reaction with  close to 0 V, there could be several materials with up to 0.3 eV difference in  (marked by the full green circles) that are comparable in activity at high overpotential. At low overpotential, the optimal material (marked by the full blue circle) could deviate from the apex of the volcano curve by about 0.2 eV.
To sum up, the explicit consideration of the PZC exerts a larger influence on the criterion for reactions with  close to 0 V, such as the HER, than those with  far from 0 V, such as the ORR and the CO2 reduction reaction.

Implications for materials screening
It is the common practice to evaluate catalysts in the low current density regime (~1 mA/cm2), where mass transport effects do not affect the measured activity. However, as pointed out in this work, the sequence of catalyst activity as a function of a material descriptor that is obtained under these conditions could be misleading if used in real-world devices. For example, fuel cells operate at 0.6~0.9 VSHE which is far from the equilibrium potential of the ORR. Recently devised experimental setups, such as that of Zalitis et al., allow catalyst activities to be measured over a wide range of overpotentials without interference from mass transport effects.[50,51] In comparative analyses conducted at several high values of overpotential, the trend predicted by the presented criterion should be seen.

CONCLUSION
This contribution explores the origin of the overpotential-dependent volcano plot and provides a criterion that predicts whether the volcano apex shifts towards stronger or weaker binding direction with increasing overpotential. For the case of a generic two-step PCET reaction in highly concentrated solution with  and , the shift direction of the apex depends on the relative magnitude of the two activation energies of the two reaction steps. At high overpotentials, the deviation of the optimal catalyst from the thermoneutral one can be larger than 0.2 eV, the uncertainties of DFT calculations.[40] 
The criterion is then generalized for cases without the assumption of  and proven effective for a multi-step reaction, viz. the ORR. Furthermore, kinetic parameters that are fixed in the derivation of Theorem 1, such as the transfer coefficient and the PZC, are then allowed to randomly fluctuate. With the transfer coefficient randomly sampled in the range between 0.3 and 0.7, the trend in the shift of the volcano apex remains valid. The scattering of the PZC between -0.5 and 0.5 V mainly affects the criterion when applying to reactions with the overall equilibrium potential close to 0 V (vs. the potential in bulk electrolyte solution); whereas reactions with  far from 0 V can be safely analyzed by the criterion.
The criterion would manifest itself in experiments when activities of a class of materials are tested from low to high overpotentials if mass transport losses are either eliminated or corrected for. The contribution emphasizes that comparative analyses of electrocatalyst materials should be considered as multiparameter problems. As demonstrated, especially the surface charging relation, which, in the simplest case, could be represented by the potential of zero charge, and intrinsic kinetic parameters of specific electron transfer processes, including the transfer coefficient, should be considered in descriptor-based approaches of catalyst screening.
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